FALCON@home: a high-throughput protein structure prediction server based on remote homologue recognition
نویسندگان
چکیده
SUMMARY The protein structure prediction approaches can be categorized into template-based modeling (including homology modeling and threading) and free modeling. However, the existing threading tools perform poorly on remote homologous proteins. Thus, improving fold recognition for remote homologous proteins remains a challenge. Besides, the proteome-wide structure prediction poses another challenge of increasing prediction throughput. In this study, we presented FALCON@home as a protein structure prediction server focusing on remote homologue identification. The design of FALCON@home is based on the observation that a structural template, especially for remote homologous proteins, consists of conserved regions interweaved with highly variable regions. The highly variable regions lead to vague alignments in threading approaches. Thus, FALCON@home first extracts conserved regions from each template and then aligns a query protein with conserved regions only rather than the full-length template directly. This helps avoid the vague alignments rooted in highly variable regions, improving remote homologue identification. We implemented FALCON@home using the Berkeley Open Infrastructure of Network Computing (BOINC) volunteer computing protocol. With computation power donated from over 20,000 volunteer CPUs, FALCON@home shows a throughput as high as processing of over 1000 proteins per day. In the Critical Assessment of protein Structure Prediction (CASP11), the FALCON@home-based prediction was ranked the 12th in the template-based modeling category. As an application, the structures of 880 mouse mitochondria proteins were predicted, which revealed the significant correlation between protein half-lives and protein structural factors. AVAILABILITY AND IMPLEMENTATION FALCON@home is freely available at http://protein.ict.ac.cn/FALCON/. CONTACT [email protected], [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Consensus fold recognition by predicted model quality
Consensus-based protein structure prediction methods have been proved to be successful in recent CASPs (Critical Assessment of Structure Prediction). By combining several weaker individual servers, a meta server tends to generate better predictions than any individual server. In this paper, we present a Support Vector Machines (SVM) regression-based consensus method for protein fold recognition...
متن کاملStructure prediction meta server
UNLABELLED The Structure Prediction Meta Server offers a convenient way for biologists to utilize various high quality structure prediction servers available worldwide. The meta server translates the results obtained from remote services into uniform format, which are consequently used to request a jury prediction from a remote consensus server Pcons. AVAILABILITY The structure prediction met...
متن کاملIn Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax
Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...
متن کاملProtein structure prediction servers at University College London
A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London. The popular PSIPRED server allows users to perform secondary structure prediction, transmembrane topology prediction and protein fold recognition. More recent servers include DISOPRED for the prediction of protein dynamic disorder ...
متن کاملSH3-Hunter: discovery of SH3 domain interaction sites in proteins
SH3-Hunter (http://cbm.bio.uniroma2.it/SH3-Hunter/) is a web server for the recognition of putative SH3 domain interaction sites on protein sequences. Given an input query consisting of one or more protein sequences, the server identifies peptides containing poly-proline binding motifs and associates them to a list of SH3 domains, in order to compose peptide-domain pairs. The server can accept ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2016